

Future Urban Scene Generation Through Vehicle Synthesis

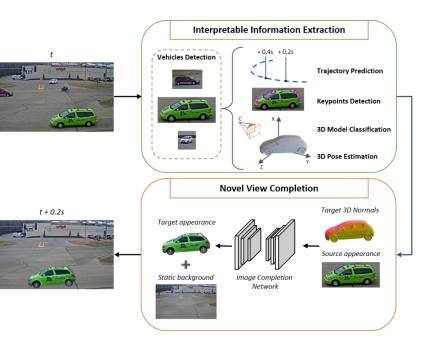
Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

{alessandro.simoni, luca.bergamini24, andrea.palazzi, simone.calderara, rita.cucchiara}@unimore.it

University of Modena and Reggio Emilia, Italy

- DOL-Centro Interdipartimentale di Ricerca Softech: ICT per le Imprese

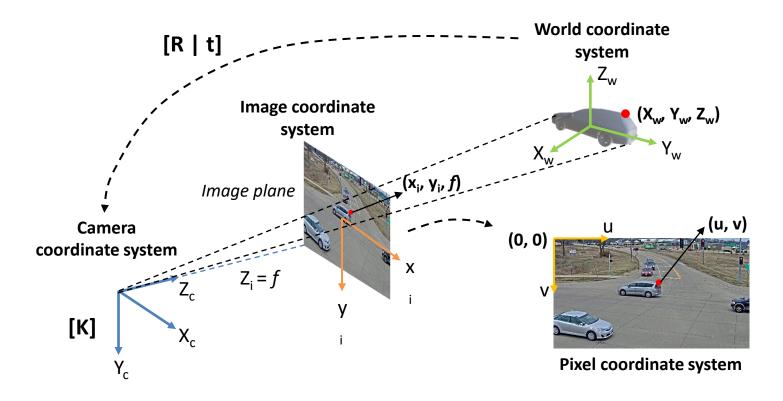
- In the literature **traffic monitoring** and **autonomous driving** problems are usually addressed with **end-to-end methods**
- Since safety is a mandatory requirement, the method interpretability should be as similar as possible to the human way of thinking^{1,2}
- In this work, we present a novel two stages framework reproducing **deterministic visual future** for videos taken by **traffic surveillance cameras**
- We show how our method can output **"alternative futures"** depending on the given inputs and how it outperforms end-to-end **image-to-image translation** and **recurrent** approaches



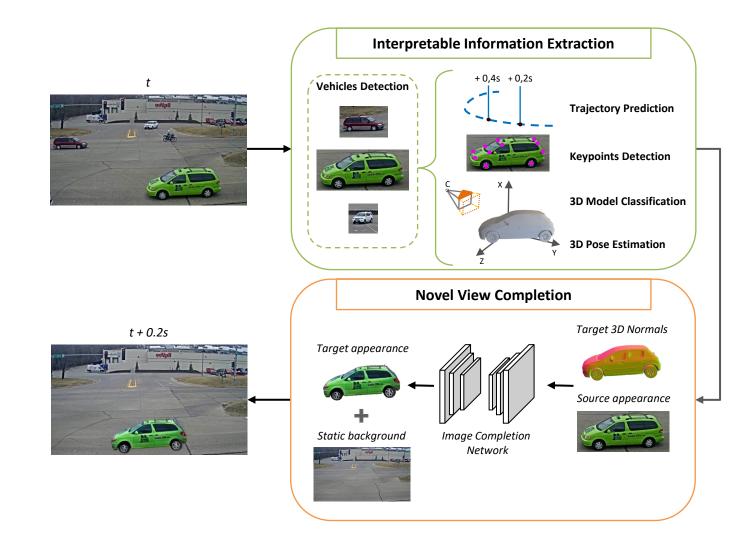
M. Bansal et al., Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. In arXiv:1812.03079, 2018.
 J. Hong et al., Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions. In CVPR, 2019.

- In the automotive setting RGB cameras are certainly an enabling technology for scene understanding tasks
- Most of the literature approaches rely also on LiDAR/radar or depth sensors which capture precise
 3D information of the scene
- Our challenging goal is to extract information about vehicles from **monocular RGB data only** and use them to generate a **3D synthetic representation** reprojected into the scene
- In addition to this, we also consider the **temporal trajectory within 1s in the future** of each vehicle **rotating** and **translating** them from their start position in the frame
- The given output will be a video representing the same scene in which each vehicle is replaced with its synthetic textured model

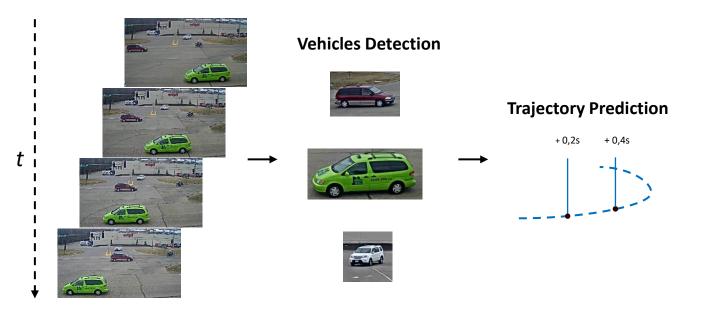
- A key feature of our approach relies on the correspondence between 2D predicted keypoints and 3D annotated keypoints on 3D synthetic vehicle models
- This information enables the computation of an **object viewpoint** with respect to a camera point of view, the well-known **perspective-n-point** problem



Overview of the proposed method



INTERPRETABLE INFORMATION EXTRACTION



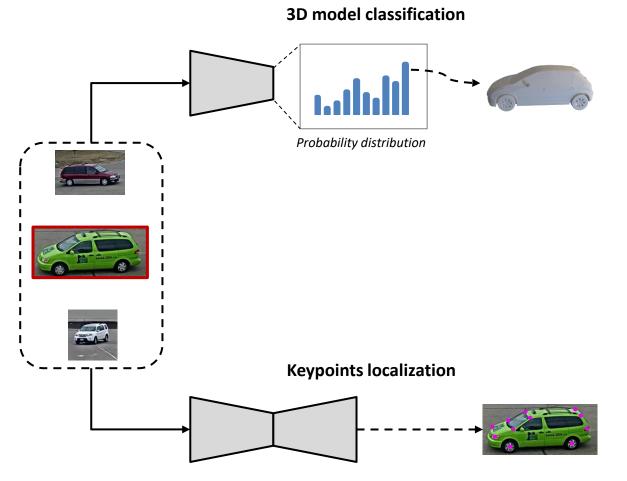
- Input: set of N frames from RGB camera device
- Vehicle detection:
 an SSD¹ architecture outputs vehicle
 bounding boxes

• Trajectory prediction:

a graph-based network, TrackletNet², performs a tracking-by-detection algorithm

- 1. W. Liu et al., Ssd: Single shot multibox detector. In ECCV, 2016.
- 2. G. Wang et al., Exploit the connectivity: Multi-object tracking with trackletnet. In ACMMM, 2019.

INTERPRETABLE INFORMATION EXTRACTION



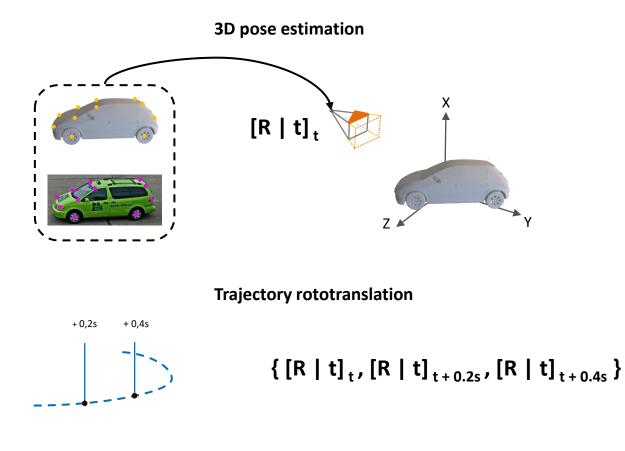
- Input: vehicle image cropped from its bounding box
- 3D model classification: a VGG19¹ network outputs the 3D vehicle model class

• 2D keypoints localization:

a Stacked Hourglass² architecture outputs 12 semantic keypoints (e.g. wheels, lights, frontal and back window corners)

- 1. K. Simonyan et al., Very deep convolutional networks for large-scale image recognition. In arXiv preprint arXiv:1409.1556, 2014.
- 2. A. Newell et al., Stacked hourglass networks for human pose estimation. In ECCV, 2016.

INTERPRETABLE INFORMATION EXTRACTION



• Input:

annotated 3D keypoints, predicted 2D keypoints and trajectory

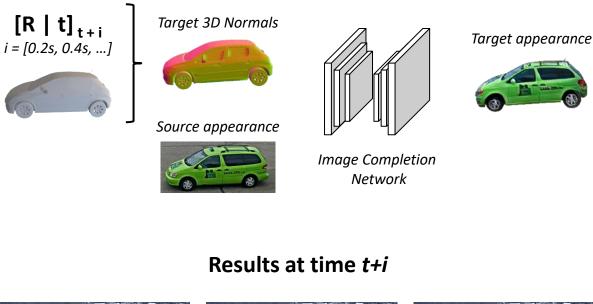
• 3D pose estimation:

a Levenberg-Marquardt¹ pose optimization iterative algorithm outputs the initial 6DoF vehicle pose

• Trajectory rototranslation:

3D lifted trajectory (pixel to GPS/meters) is applied as consecutive transformations

NOVEL VIEW COMPLETION



• Input:

trajectory rototranslation, 3D vehicle model, cropped vehicle image

• Novel view completion:

an image completion network^{1,2} exploits appearance information from initial vehicle image and 3D normals of the rototranslated model and outputs vehicle appearance from the new viewpoint

- 1. P. Esser et al., A variational u-net for conditional appearance and shape generation. In CVPR, 2018.
- 2. A. Palazzi et al., Warp and learn: Novel views generation for vehicles and other objects. In TPAMI, 2020.

Pascal3D+1

- Collection of images from 12 different object classes
- Annotations of 2D keypoints, 3D model class, 3D pose
- 10 possible 3D synthetic vehicle models

CarFusion²

- Videos of street intersections taken by people on a sidewalk
- Annotations of bounding boxes and 2D keypoints for each vehicle

CityFlow³

- Videos of street intersections taken from traffic surveillance cameras
- Annotations of detection, tracking and re-identification information
- 1. Y. Xiang et al., Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014.
- 2. N. Dinesh Reddy et al., Carfusion: Combining point tracking and part detection for dynamic 3d reconstruction of vehicles. In CVPR, 2018.
- 3. Z. Tang et al., Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In CVPR, 2019.

• Image-to-image translation and recurrent baseline networks

- 1. T.-C. Wang et al., High-resolution image synthesis and semantic manipulation with conditional gans. In CVPR, 2018.
- 2. W. Lotter et al., Deep predictive coding networks for video prediction and unsupervised learning. In arXiv preprint arXiv:1605.08104, 2016.

• Our approach

GT scene¹

VUnet² synthetized scene

Warp&Learn³ synthetized scene

- 1. Z. Tang et al., Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In CVPR, 2019.
- 2. A. Palazzi et al., Warp and learn: Novel views generation for vehicles and other objects. In TPAMI, 2020.
- 3. P. Esser et al., A variational u-net for conditional appearance and shape generation. In CVPR, 2018.

Quantitative results

- We compare our results on the **CityFlow** dataset evaluating the difference in the **appearance** of the cropped area of each vehicle
- The proposed approach outperforms both image-to-image translation and recurrent baseline networks where the results tend to be blurry or faded
- Our method maintains **good performance in the long run** throughout the entire temporal window in analysis (i.e. 1s in the future)

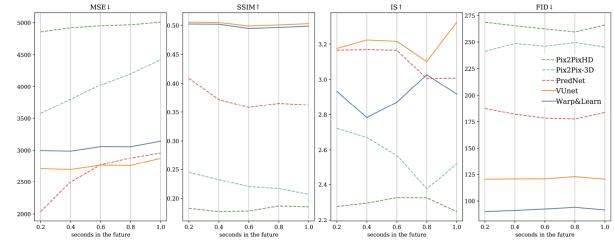


 TABLE I

 Comparison on the test set using Mean Squared Error (MSE).

 Each column refers to a future displace. Lower is better.

Method	+0.2s	+0.4s	+0.6s	+0.8s	+1.0s
Pix2PixHD [6]	4854	4919	4950	4966	5007
Pix2Pix-3D	3579	3802	4026	4198	4424
PredNet [16]	2037	2499	2765	2877	2959
Our(VUnet [9])	2705	2692	2759	2755	2870
Our(Warp&Learn [10])	2996	2987	3058	3055	3153

TABLE III Comparison on the test set using Inception Score (IS). Each column refers to a future displace. Higher is better

Method	+0.2s	+0.4s	+0.6s	+0.8s	+1.0s
Pix2PixHD [6]	2.27	2.29	2.32	2.32	2.24
Pix2Pix-3D	2.72	2.67	2.56	2.37	2.51
PredNet [16]	3.16	3.16	3.16	3.00	3.00
Our(VUnet [9])	3.17	3.22	3.21	3.10	3.32
Our(Warp&Learn [10])	2.93	2.78	2.87	3.02	2.91

TABLE II
OMPARISON ON THE TEST SET USING STRUCTURAL SIMILARITY INDEX
(SSIM). Each column refers to a future displace. Higher is
BETTER.

Method	+0.2s	+0.4s	+0.6s	+0.8s	+1.0
Pix2PixHD [6]	0.18	0.17	0.17	0.18	0.18
Pix2Pix-3D	0.24	0.23	0.22	0.21	0.20
PredNet [16]	0.40	0.37	0.35	0.36	0.36
Our(VUnet [9])	0.50	0.50	0.49	0.50	0.50
Our(Warp&Learn [10])	0.50	0.50	0.49	0.49	0.49

TABLE IV
COMPARISON ON THE TEST SET USING FRECHET INCEPTION DISTANCE
(FID). EACH COLUMN REFERS TO A FUTURE DISPLACE. LOWER IS
BETTER

Method	+0.2s	+0.4s	+0.6s	+0.8s	+1.0s
Pix2PixHD [6]	274.2	268.6	265.3	262.3	259.4
Pix2Pix-3D	240.6	241.2	248.6	245.9	249.5
PredNet [16]	197.1	197.2	196.4	193.4	196.3
Our(VUnet [9])	192.8	187.3	182.0	178.3	177.49
Our(Warp&Learn [10])	90.4	90.22	91.2	92.6	94.1

- We propose a novel framework for predicting visual future appearance of an urban scene
- As an alternative to end-to-end methods, we include human interpretable information and each actor in the scene is modelled independently
- We show how our method outperforms end-to-end approaches both qualitatively and quantitatively

Open issues:

- Improving 3D model classification accuracy avoiding **class swapping**
- Introducing some road constraints improving potential wrong initial poses

Code is available online: https://github.com/alexj94/future_urban_scene_generation

Thank you for your attention

Future Urban Scene Generation Through Vehicle Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

{alessandro.simoni, luca.bergamini24, andrea.palazzi, simone.calderara, rita.cucchiara}@unimore.it

University of Modena and Reggio Emilia, Italy

Centro Interdipartimentale di Ricerca Softech: ICT per le Imprese