

Motivations

Addressing the task as an **inverse graphics problem**, 3D mesh reconstruction from 2D single-view images has shown astonishing progress in the computer vision community. However, current literature approaches have some limitations:

- They learn **category-specific** priors training and evaluating on image collections of a **single object category**;
- They initialize the category meanshape with a **3D represen**tative template model.

Goals & Contributions

In this work, we propose an **end-to-end method** that takes singleview RGB images of **multiple object categories** and predicts their 3D textured shape. The method learns in an unsupervised manner a series of deformable 3D models, called **meanshapes**, representing each object category. To produce the final object shape, it infers **instance-specific deformations** alongside its pose and texture.

Our main contributions are as follows:

- The proposed method is trained end-to-end on single-view image collections of multiple object categories using just foreground masks and camera poses as supervision, but without any explicit category nor 3D supervision;
- The **unsupervised shape selection** module predicts meaningful meanshapes of different object categories, starting from a set of 3D spheres;
- The vertex deformation module is independent from the number of mesh vertices. Thus, it produces smooth 3D deformations and supports the **dynamic mesh subdivision** during training.

Multi-Category Mesh Reconstruction From Image Collections Alessandro Simoni, Stefano Pini, Roberto Vezzani, Rita Cucchiara University of Modena and Reggio Emilia – {name.surname, s.pini}@unimore.it

The method starts by extracting two sets of visual features from an RGB image *I* with a **ResNet-18** network: (i) f_{shape} is used to learn shape priors and deformations, and (ii) f_{tex} is used to learn the object texture. These features are then processed by 4 different modules:

- The unsupervised shape selection module takes the features f_{shape} and predicts a set of weights w_i . The aim of this module is to learn a weighted meanshape M, approximating a hard shape selection over *N* meanshapes representing the object categories.
- The vertex deformation module predicts a vertex displacement Δv_i , taking as input the features f_{shape} , the set of weights w_i and a vertex v_j of the meanshape M. This operation is done in parallel for each vertex of *M* producing the final shape \hat{M} . In this way, the architecture is **indepen**dent from the number of vertices and can process meshes of different sizes, enabling a **dynamic mesh subdivision**.
- The **3D** pose predictor module regresses a weakperspective object pose $\hat{\pi} = (\hat{s}, \hat{t}, \hat{q})$ directly from f_{shape} .
- The **texture predictor** module takes f_{tex} and outputs an RGB texture image \hat{I}_{tex} , which is then mapped into the UVspace of \hat{M} that is homeomorphic to a sphere.

As final step, the **SoftRas differentiable renderer** renders the 3D textured shape of the object combining \hat{M} , \hat{I}_{tex} and $\hat{\pi}$.

 $\mathcal{L} = \mathcal{L}_{mask} + \mathcal{L}_{smooth} + \mathcal{L}_{def} + \mathcal{L}_{pose} + \mathcal{L}_{pose_reg} + \mathcal{L}_{tex}$

The method is **trained end-to-end** using foreground masks and 3D pose as supervision along with some regularization terms for the shape smoothness/deformation and the quaternion rotation.

Proposed Method

Our method achieves on par or better results compared literature on Pascal3D+ and CUB datasets					
Approach		Training	g Aeroplane	e Car	Avg
		indon		0 600	
DRC		indep.	0.400	0.000 0.670	0.500
CMR		indep.	0.420	0.070	0.040 0.550
IMR		indep.		0.040	0.550
U-CMR		inden	0.440	0.000	0.000
Ours (<i>N</i> meanshapes)		nacp.	0 460	0.040	0.572
Ours	s (2 meanshap	es) joint	0.448	0.686	0.567
Input image	Weighted meanshape	Predicted shape	Predicted shape with texture		
Ι	M	\hat{M}	I	$\hat{M} + \hat{I}_{\text{tex}}$	

Conclusion

Our method recovers 3D textured meshes of objects from multiple categories, using RGB images as input and only foreground masks and coarse camera poses as supervision. **Code available at:** https://github.com/aimagelab/mcmr

Results

to the

