

International Conference on 3D Vision London, UK / Online December 1-3, 2021

# Multi-Category Mesh Reconstruction From Image Collections



Alessandro Simoni, Stefano Pini, Roberto Vezzani, Rita Cucchiara

{alessandro.simoni, s.pini, roberto.vezzani, rita.cucchiara}@unimore.it

University of Modena and Reggio Emilia, Italy







Speaker: Alessandro Simoni



**3D mesh reconstruction from 2D images** is constantly progressing in the computer vision community.

Recent deep learning approaches <sup>[1,2,3]</sup> can restore shape, pose and texture from single-view RGB images as an **inverse graphics problem**.

All these methods share the following approach:

- They learn a mean 3D shape, called **meanshape**, representing a single object category
- They infer instance-specific deformation, texture and
  3D pose that are applied to the learned meanshape

1. Kanazawa, Angjoo et al. "Learning category-specific mesh reconstruction from image collections". In ECCV. 2018.

2. Goel, Shubham et al. "Shape and viewpoint without keypoints". In ECCV. 2020.

3. Li, Xueting et al. "Self-supervised single-view 3d reconstruction via semantic consistency". In ECCV. 2020.



Speaker: Alessandro Simoni



Limitations of current literature approaches:

- They are **category-specific**, so trained and evaluated on image collections of a single object category
- They initialize the learnable meanshape with a category-specific 3D template model

Our proposal:

- End-to-end method trained on image collections of multiple object categories
- Multiple-meanshape unsupervised learning
- Learning shapes directly from **spherical initialization**
- No explicit category nor 3D supervision, but only foreground masks and camera poses





### Proposed method

Speaker: Alessandro Simoni



Speaker: Alessandro Simoni



- Input  $\rightarrow$  visual features  $f_{shape}$
- Model  $\rightarrow$  2 fc layers + softmax + N deformable meanshapes (N = object categories)
- Output  $\rightarrow$  set of weights w

Scores *w* are used to compute a weighted sum of the *N* meanshapes' vertices producing a **weighted meanshape**:

$$M = (V, F) = (\sum_{i=1}^{N} w_i V_i, F)$$

This operation results in a **smooth and differentiable approximation** of a hard shape selection.

Meanshapes are initialized as **spheres** and progressively **updated** and **specialized** in different object categories.







### Vertex Deformation

 $f_{shape}$ 

- Input  $\rightarrow$  visual features  $f_{shape}$  + weigths w + vertex  $v_j$ Ο
- Model  $\rightarrow$  Lightweight mlp network <sup>[1,2]</sup>
- Output  $\rightarrow$  single vertex deformation  $\Delta v_i$ Ο

The weighting scores w create a **connection** between the weighted meanshape M and the predicted deformation  $\Delta V$ that are summed together producing the final shape:

 $\hat{M} = M + \Delta V = (V + \Delta V, F)$ 

This network configuration is **independent** from the number of mesh vertices enabling:

- dynamic mesh subdivision during training Ο
- robustness towards different mesh dimension  $\bigcirc$



Input image

<sup>2.</sup> Park, Jeong Joon et al. "Deepsdf: Learning continuous signed distance functions for shape representation". In CVPR. 2019.



#### Pascal3D+<sup>[1]</sup>

12 rigid object classes

#### Annotations:

- o 2D keypoints
- o 3D model class
- o 3D pose





### CUB<sup>[2]</sup>

"Bird" class with 200 bird species

Annotations:

- o Bounding box
- Rough segmentation
- Attributes (size, shape, color, ...)
- 3D pose computed with SfM<sup>[3]</sup>





- 1. Xiang, Yu et al., "Beyond pascal: A benchmark for 3d object detection in the wild". In WACV, 2014.
- 2. Wah, Catherine et al., "The Caltech-UCSD Birds-200-2011 Dataset". In Technical Report CNS-TR-2011-001 (California Institute of Technology). 2011.
- 3. Kanazawa, Angjoo et al. "Learning category-specific mesh reconstruction from image collections". In ECCV. 2018.





Our method achieves **on par or better results** compared to category-specific approaches on Pascal3D+ and CUB.

#### Evaluation metrics are:

- **3D IoU**<sup>[1]</sup> for Pascal3D+
- **Mask IoU** for CUB (no 3D models available)



| $\mathbf{Pascal3D}+$          |          |           |       |       |  |  |
|-------------------------------|----------|-----------|-------|-------|--|--|
| Approach                      | Training | Aeroplane | Car   | Avg   |  |  |
| CSDM [17]                     | indep.   | 0.400     | 0.600 | 0.500 |  |  |
| DRC [48]                      | indep.   | 0.420     | 0.670 | 0.545 |  |  |
| CMR [16]                      | indep.   | 0.460     | 0.640 | 0.550 |  |  |
| IMR [47]                      | indep.   | 0.440     | 0.660 | 0.550 |  |  |
| U-CMR [7]                     | indep.   | -         | 0.646 | -     |  |  |
| <b>Ours</b> ( $N$ meanshapes) | indep.   | 0.460     | 0.684 | 0.572 |  |  |
| Ours (2 meanshapes)           | joint    | 0.448     | 0.686 | 0.567 |  |  |

#### CUB

| Annroach                    | Mask     | loU ↑  | <b>Texture metrics</b> |                |                         |  |
|-----------------------------|----------|--------|------------------------|----------------|-------------------------|--|
| Арргоасн                    | Pred cam | GT cam | SSIM ↑                 | $L1\downarrow$ | <b>FID</b> $\downarrow$ |  |
| CMR [16]                    | 0.706    | 0.734  | 0.718                  | 0.063          | 290.32                  |  |
| DIB-R [2]                   | -        | 0.757  | -                      | -              | -                       |  |
| U-CMR [7]                   | 0.637    | -      | 0.689                  | 0.077          | 190.35                  |  |
| Ours (1 meanshape)          | 0.658    | 0.721  | 0.717                  | 0.064          | 227.24                  |  |
| <b>Ours</b> (14 meanshapes) | 0.642    | 0.723  | 0.715                  | 0.065          | 231.95                  |  |



#### Some ablation studies on Pascal3D+.

**Multiple-meanshape** learning achieves **better** results w.r.t. single meanshape approach.

| Training alagood             | Number of  | 3D IoU ↑ | Mask IoU ↑ |        | Texture metrics |                |                          |
|------------------------------|------------|----------|------------|--------|-----------------|----------------|--------------------------|
| Training classes             | meanshapes |          | Pred cam   | GT cam | SSIM ↑          | $L1\downarrow$ | $\mathbf{FID}\downarrow$ |
| aeroplane, car               | 1          | 0.532    | 0.592      | 0.689  | 0.736           | 0.066          | 365.01                   |
| aeroplane, car               | 2          | 0.552    | 0.671      | 0.702  | 0.737           | 0.062          | 344.80                   |
| bicycle, bus, car, motorbike | 1          | 0.517    | 0.665      | 0.751  | 0.601           | 0.100          | 390.41                   |
| bicycle, bus, car, motorbike | 4          | 0.543    | 0.711      | 0.759  | 0.607           | 0.094          | 380.15                   |
| 12 Pascal3D+ classes         | 1          | 0.409    | 0.602      | 0.670  | 0.660           | 0.088          | 357.51                   |
| 12 Pascal3D+ classes         | 12         | 0.425    | 0.620      | 0.685  | 0.665           | 0.086          | 345.90                   |

**Dynamic mesh subdivision** during training has also a **positive impact** on results.

| Subdivision       | Mask IoU ↑ |        | <b>Texture metrics</b> |                |                          |
|-------------------|------------|--------|------------------------|----------------|--------------------------|
| level             | Pred cam   | GT cam | SSIM ↑                 | $L1\downarrow$ | $\mathbf{FID}\downarrow$ |
| 3                 | 0.701      | 0.759  | 0.600                  | 0.096          | 395.96                   |
| 4                 | 0.685      | 0.756  | 0.593                  | 0.101          | 385.68                   |
| $3 \rightarrow 4$ | 0.711      | 0.759  | 0.607                  | 0.094          | 380.15                   |



"Multi-Category Mesh Reconstruction



#### Category **meanshapes** are learned during training, evolving from **spherical initialization**.





## Qualitative results

Speaker: Alessandro Simoni





We propose a **multi-category end-to-end method** to reconstruct a 3D object shape with only foreground masks and rough camera pose as supervision.

An **unsupervised shape selection module** (USS) is introduced in order to learn category meanshapes starting from spherical initialization.

A vertex deformation module predicts single vertex displacement conditioned on the output of the USS module enabling dynamic mesh subdivision during training.

The proposed method achieves **on par or better results on Pascal3D+ and CUB** datasets compared to category-specific literature approaches, while being able to predict shapes of different categories at the same time.

You can find the code on the GitHub repo:

https://github.com/aimagelab/mcmr



International Conference on 3D Vision London, UK / Online December 1-3, 2021

## Thank you for your attention!

Multi-Category Mesh Reconstruction From Image Collections

Alessandro Simoni, Stefano Pini, Roberto Vezzani, Rita Cucchiara

{alessandro.simoni, s.pini, roberto.vezzani, rita.cucchiara}@unimore.it

University of Modena and Reggio Emilia, Italy





